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Abstract

We revisit the portfolio allocation problem with designated risk-budget. We generalize the problem of
arbitrary risk budgets with unequal correlations to one that includes return forecasts and transaction costs
while keeping the no-shorting constraint. We offer a convex second order cone formulation that scales
well with the number of assets and explore solutions to problem variants - on equity-bond asset allocation
problems as well as formulating portfolios using index constituents from the NASDAQ100 index, illustrating
the benefits of this approach.
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1. Introduction

In portfolio allocation problems, risk-budgeting
and risk-parity are two important criteria that are
closely related to each other. Although the invest-
ment management community is quite familiar with
risk-parity as a concept, the term risk-budgeting
has been less heard and talked about, both in aca-
demic and practitioner circles. In fact, it may come
as a surprise that the term risk-budgeting, men-
tioned in [5] actually predates the term risk-parity
that was coined around the same time as [14], where
the authors provided a clear definition of risk con-
tributions to a portfolio. Specifically, the problem
of risk budgeting the portfolio was defined as the
following - given covariance information on a bas-
ket of assets, risk budgeting seeks to form a port-
folio whose partial risks are weighted as per a pre-
determined scheme.
Consider n assets indexed by set [n] =

{1, 2, . . . , n}. Let bi ∈ [0, 1] to be the fractional
risk budget of asset i ∈ [n] and C ∈ Rn × Rn their
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covariance matrix. Let x ∈ Rn representing the
portfolio’s fractional composition. The partial risk
of asset i under a variance risk measure can be ex-
pressed as xi(Cx)i. Then, the risk budgeting portfo-
lio for a specific risk measure, namely the variance,
satisfies :

xi(Cx)i = bi x
⊤Cx, i ∈ [n].

Additionally, since the portfolio is fully invested
and fractional risk budgets must add to 1 we have

n∑
i=1

xi = 1 and

n∑
i=1

bi = 1 (1)

Summarizing the above observations, we note that
the risk budget problem (P) can be formulated as:

minimize
√
x⊤Cx

(P) subject to xi(Cx)i = bi x
⊤Cx, i ∈ [n]

1⊤x = 1

x ≥ 0

It should be noted that the risk parity problem is
a specific case of the risk budgeting problem where
all fractional risk budgets are equal, i.e. bi = 1

n
∀ i ∈ [n]. In this work we re-formulate the gener-
alized risk-budgeting problem with return forecasts
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and transaction costs as a min-risk budgeting prob-
lem (a second order cone program) and discuss the
applications of this result to systematic asset allo-
cation.

1.1. Literature review

As the concept of risk-parity took hold in the
investment community through the 2008 banking
crisis, [15] made a compelling case for risk-parity
as an allocation strategy by focusing on the large
risk allocation that popular 60-40 portfolios gave to
equity markets. As more researchers became inter-
ested in the risk budgeting problem, [8] defined the
risk budgeting problem as a general case of the risk
parity problem and presented theoretical results on
the variance of the resulting portfolio - that it is
in between the minimum variance and the corre-
sponding weight budgeting portfolio. The authors
also analytically solved the problem for the two-
asset case and presented existence and uniqueness
results for the general case. The authors in [17]
were able to extend the risk budgeting approach to
risk factors - as an illustration, they showed that
this approach can be used to allocate risk to the
Fama-French factors in a systematic way.
In a work that seeks to understand the funda-

mental workings of risk-parity, [6] proposed lever-
age aversion as a plausible reason as to why the
average investor does not hold the risk parity port-
folio. The authors also pointed out that not all
investors have access to leverage, however, some
do. These more sophisticated investors can indeed
benefit from the superior risk adjusted returns of
the levered risk parity portfolio. Focusing more on
work that makes computational advances towards
calculating the weights in the risk-parity portfo-
lio, [13] reviewed existing formulations of the risk-
parity portfolio (ERC - equal risk contribution port-
folio), compared the empirical efficiency of solv-
ing this problem using a variety of techniques and
proposed an alternate formulation that relied upon
converting a hyperbolic constraint to a second order
cone constraint. Consequently, they showed that
the ERC portfolio with non-homogeneous correla-
tions across assets can be solved as a second order
cone program.
The authors in [9] showed that ERB (Equal

Risk Bounding) is a theoretically superior tech-
nique than ERC for portfolio selection. In the case
where short selling is allowed, the ERB portfolio
was shown to be the same as the ERC portfo-
lio. When short selling is not allowed, ERB allows

for the exclusion of certain assets in its solution,
thereby leading to lower variance portfolios than
the ones obtained using ERC. Thus the ERB prob-
lem encompasses the ERC problem and in addi-
tion allows for lower variance portfolios as shown in
[9]. In [12], the 2014 ERC portfolio SOCP formu-
lation was extended to equal CVaR contributions.
In work that explores relaxations to incorporate re-
turn forecasts, [10] presented a formulation of the
ERC portfolio that was allowed to deviate from the
ERC allocations to adjust for return forecasts. In
more recent work, [4] solved the ERC portfolio with
a cardinality constraint. The authors empirically
demonstrate that these portfolios show good out of
sample performance.

In this work we extend the results of [13] to
formulate an arbitrary risk budget portfolio with
unequal correlations, return forecasts, transaction
costs, and potentially also position constraints (the
most generic case in portfolio optimization). We
present a second order cone reformulation of the
proposed problem and provide a computational
analysis to demonstrate the efficacy and efficiency
of the reformulation for examples with a large (≈
100) number of assets.

1.2. Problem setup and contribution

We consider a set of n assets. We further de-
fine by C ∈ Rn×n and r ∈ Rn, the positive-definite
covariance matrix and the vector of expected re-
turns for these assets, respectively. We denote by
s a vector of investment sizes (denominated in $)
of a long-only portfolio and xk the corresponding
fractional holdings in the kth asset:

xk =
1

Σisi
sk

As shown by [16] and [18] in prior work, a solution
to the risk budget problem (P) can be computed by
solving an alternate problem (P∗) given as follows:

(P∗) min
x∈Rn

+

1

2
x⊤Cx−

n∑
i=1

bi log xi

As a brief explanation of why this works, observe
that the first order optimality conditions for (P∗)
are

(Cx)i −
bi
xi

= 0, i ∈ [n], (2)

which are exactly the risk budgeting conditions in
(P) if we set the total variance of the portfolio in
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(1), without loss of generality, to 1. Note that the
final portfolio satisfying the summation constraint
(1) can be obtained by re-scaling the weights so they
sum to 1. It is worth-while to note that this works
as equation (1) is scale-invariant - if a solution x∗

satisfies (1), so does kx∗. Problem (P∗) is usually
solved using some variant of Newton’s method or
block coordinate descent [18].
Further observe that any additions of more pa-

rameter(s) to the objective function in the original
problem (adding asset return forecasts or account-
ing for transactions cost) or adding additional con-
straints will alter the first order optimality condi-
tions (2). Consequently, target risk budgets may
not be achieved. In other words, the convex formu-
lation above only works in a very specific (almost
impractical) case - with no return estimates, no po-
sition constraints, or transaction costs. It is note-
worthy that [13] use a different approach in formu-
lating the ERC portfolio, a special case of the risk
budgeting portfolio, as an SOCP program. Their
approach could potentially handle the extra con-
straints that are proposed in this work, however the
formulation is specifically for computing an ERC
portfolio.
Our work extends the work of [13] to show the

generalized second order cone program formulation
for an arbitrary risk budgeting portfolio allocation
with return forecasts and transaction costs. We
solve arbitrary risk budgeting exactly and argue its
merits as a portfolio allocation process. Further,
we provide examples that show its benefits on a few
uses cases. Finally, we explore variations of exact
risk budgeting that relax the risk budgeting equal-
ity constraints to provide long-term economic value
to the portfolio.

2. Generalized Risk Budgeting

As discussed earlier, the risk budgeting problem
that can be solved by using the KKT conditions
for the modified unconstrained problem is a start-
ing point for the risk budgeting approach. However,
two major disadvantages of the formulation are: (a)
asset managers are known to have return forecasts,
even though the estimates may be error-prone. (b)
risk budgets are not exactly known, however, the
minimum or maximum risk allocation for each as-
set class usually is known to a sophisticated asset
manager.
In particular, we focus on a specific version of this

problem where asset managers have strong opin-

ions on the maximum risk budgets they would like
to allocate for each asset (or strategy). Indeed, an
effective asset allocation strategy could begin with
a clear picture of a ‘max-risk-budget’ that a man-
ager would like to have in order to meet return
expectations. These could be driven out of sector
specific maximum risk allocations or other require-
ments from an allocation. For example, one can
have a desirable maximum allocation to Environ-
mental and Socially Responsible companies (ESG).
In this context, we now consider the following mean
variance with max-risk budgeting problem (P̄)

minimize −r⊤x+ λ
√
x⊤Cx

(P̄) subject to xi(Cx)i ≤ bi x
⊤Cx, i ∈ [n]

l ≤ x ≤ u

1⊤x = 1

where ri is the return of asset i, λ > 0 controls
the mean-variance trade-off, the scalar bi is the
minimum risk budget for asset i and the vectors
l, u ∈ Rn

+ are bounds on portfolio weights. Ar-
guably, this problem does away with all of the lim-
itations of the previous formulation. Return fore-
casts can be incorporated, upper limits on risk bud-
gets can be set, and position limits are also incorpo-
rated. Transaction costs for a multi-period setting
can be added with an extra term in the objective
function, which we show later.

One observation about this formulation is the fol-
lowing: Suppose there is a feasible solution to (P̄)
and the risk budgeting constraints (1) do not hold
with equality for all i, then, by definition ∃m ∈ [n]
such that

xm(Cx)m < bm x⊤Cx (3)

where the inequality is strict. Summing across all
i, ∑

i

xi(Cx)i <
∑
i

bi x
⊤Cx

However, this suggests that the sum of all marginal
risk budgets, which must sum to the total risk, is
strictly less than the total risk establishing a con-
tradiction. A similar argument can be made if the
strict inequality in (3) is facing the other direc-
tion. This implies that risk-budget constraints in
(P̄) must hold with equality if the solution exists.
We can thus reformulate (P̄) equivalently as a min-
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risk constraint risk budgeting problem:

minimize −r⊤x+ λ
√
x⊤Cx

(P̄) subject to xi(Cx)i ≥ bi x
⊤Cx, i ∈ [n]

l ≤ x ≤ u

1⊤x = 1

2.1. A Second Order Cone Programming formula-
tion

Assume that xi is non-zero, and satisfies

xi(Cx)i ≥ bi x
⊤Cx, i = 1, . . . , n (4)

Let Cx = y and C = R⊤R be the Cholesky decom-
position of C. Letting si =

√
biRx we have,

xiyi ≥ s⊤i si, i ∈ [n]. (5)

(5) represents a rotated second order cone con-
straint. This can further be reformulated as a sec-
ond order cone constraint, i.e., for all i ∈ [n]∥∥∥∥xi − yi

2si

∥∥∥∥ ≤ xi + yi

Alternatively, substituting for y and s we have:∥∥∥∥xi − (Cx)i
2
√
biRx

∥∥∥∥ ≤ xi + (Cx)i.

Consequently, we can re-write the mean variance
optimization problem under risk budgeting con-
straints in Eq. (4) as a convex second order cone
program:

minimize −r⊤x+ λ ∥Rx∥+ µ ∥x− x0∥1

(P∗∗) s. t.

∥∥∥∥xi − (Cx)i
2
√
biRx

∥∥∥∥ ≤ xi + (Cx)i

l ≤ x ≤ u

1⊤x = 1

The above formulation has obvious advantages
when it comes to solving this problem at scale [7].
Furthermore, in the limiting case when bi are set to
1/m where m is the number of assets, it yields the
risk parity portfolio. We have included a term for
transaction costs that scales as per the L1 norm of
the difference between the target position and the
previous position in the portfolio. This formulation
compared with the previous one as in (P∗) can be
tweaked to suit individual portfolio manager’s re-
quirements.

3. Computational Analysis

We evaluate the performance of our solution ap-
proach on four use cases in this section. Each use
case has three flavors of risk budgeting style alloca-
tion. The first is a vanilla scenario where the out-
come of the min-risk budgeting problem is used as
is (MRB portfolio), the second where the output of
the optimization problem is used to estimate port-
folio expected returns and we liquidate the portfolio
(abstain option) if the expected return is less than
zero (MRBA portfolio), and the third is a combina-
tion of the abstain option with leverage (MRBAL
portfolio). The leverage was calculated as the ra-
tio between the ex-ante estimated standard devia-
tion of the CRB portfolio and the MRB portfolio,
and the MRBA portfolio was scaled with this ra-
tio to obtain the weights for the MRBAL portfolio.
For practical considerations, the permissible lever-
age for MRBAL was capped at 1.5x.

3.1. Two Assets

In this example, we show how min-risk budgeting
can be combined with a simple momentum fore-
cast to create portfolio value over the long term.
We used a 40-10 allocation between the S&P500
(Ticker: SPY) and iShares Core U.S. Aggregate
Bond (Ticker: AGG) ETFs, which involves setting
a min-risk budget of 40% for equity and 10% for
bond markets. Note that these don’t have to add
up to 100%; the only condition is that they have
to sum to a number less than equal to 100%. No
transaction costs were incorporated. The bench-
mark used is a equal weighted constant re-balance
portfolio (CRB portfolio) that allocates half of the
portfolio to the equity and the remaining half to the
bond ETF. Both are re-balanced weekly and the
weekly median price was used for entry and exit.
The mean-variance trade-off parameter λ was set
at 1. Our estimates of the return in the upcoming
week were always set to the returns for the previous
week.

We retrospectively let the prices evolve over the
720 weeks (starting on October 10, 2003 and ending
on July 20, 2022) and test the performance of the
allocation algorithms over this period (back-test).

Results are shown in Figure 1. Return forecasts
can be unreliable in general, but the results show
that having clear ideas on the risk diversification
ex-ante is useful, as the risk adjusted returns are
higher for the MRB portfolio. The MRBA (min-
risk budgeting with abstain option) shows a better

4



return profile with smaller draw-downs. The MR-
BAL portfolio that stays out of markets when ex-
pected return is negative and uses leverage (up to
1.5X) out-performs the constant re-balance portfo-
lio both in terms of return and draw-down profiles.

Figure 1: Back-test Results: Min Risk Allocation for two
assets, SPY 40%, AGG 10%

Top five draw-downs (absolute value) with dates
in focus for the constant re-balance portfolio are
shown in Table 1. For all four strategies draw-
downs are shown below in Table 2, where the top
five draw-downs for each allocation strategy are dis-
played.

Table 1: Periods of Draw-downs for CRB portfolio

From To CRB draw-down

1 2007-10-19 2010-10-08 0.287
2 2020-02-28 2020-07-17 0.169
3 2022-01-07 2022-07-20 0.164
4 2018-09-07 2019-03-15 0.068
5 2011-07-15 2012-01-06 0.057

Table 2: Top five draw-downs for each portfolio

CRB MRB MRBA MRBAL

1 0.29 0.15 0.04 0.05
2 0.17 0.12 0.04 0.05
3 0.16 0.08 0.04 0.05
4 0.07 0.05 0.04 0.05
5 0.06 0.03 0.03 0.04

The CRB portfolio has a staggering max draw-
down of 29 % compared to the MRBA portfolio at
4 %.

3.2. Four Assets, including Gold and SPY Levered
ETF

In this example, we repeat the experiment in 3.1
with an expanded set of assets and we change the
benchmark to a risk parity allocation. In particu-
lar, we include a commodity and a leveraged ETF
to enhance leverage and diversity in the portfolio.
The two additional ETFs chosen were SPXL (Di-
rexion Daily S&P500 Bull 3X) and GLD (SPDR
Gold Shares). As a result of limited history for
SPXL, we have 3,451 days of data which translate
to 720 weeks of data as of July 22 2022. The chosen
risk budget allocations across SPY, AGG, SPXL,
GLD were 35%, 5%, 35%, 5%. The risk parity port-
folio has these set to 25% risk for each asset. Other
parameters were kept the same as 3.1.

Figure 2: Backtest Results: Min Risk Allocation at SPY
35%, AGG 5%, SPXL 35%, GLD 5%

The results show that the Risk Parity strategy
can be adjusted with a flexible parameter of a min-
risk setting, and the allocation that comes from
the framework enhances the return profile in case
of both the leveraged (MRBAL) and unleveraged
(MRB, MRBA) version of the back-test.

3.3. NASDAQ 100 Constituents

In this example we used a selection of 64 as-
sets (listed cash equity) from the US stock mar-
ket that are a subset of the NASDAQ 100 index
constituents. Tickers that were part of the index
as of July 22, 2022 and had availability of daily
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price time-series data for at least 5,423 (a suffi-
ciently large number) trading days were chosen as
the asset universe. The tickers were retrieved from
the NASDAQ web page [3] on the same date, 102
tickers were filtered using the above criteria to yield
64 tickers with at least the minimum threshold of
price history. Daily price data was downloaded
from EODHistoricalData’s (a commercial service)
end of day API [1] . We down-sampled the daily
price data to a weekly time-series and used the
weekly median price as the entry and exit price
(or vice versa) for the trading simulation. We used
momentum return forecasts by setting forecast re-
turn to be the same as the previous week’s return.
The minimum risk budget for each asset is set as
half of the cross-sectionally normalized cumulative
return thus far for that asset. The ratio of half
can be chosen arbitrarily, the key concept here is
that we are choosing less than the desired alloca-
tion as a lower limit on the risk budget to allow
trade offs between the return forecast and the risk
budget. The covariance matrix is measured point
in time including all of the returns thus far and if
not already positive-definite, it was adjusted to ob-
tain the nearest positive-definite matrix following
the result in [11] that the nearest symmetric posi-
tive semi-definite matrix in the Frobenius norm to
an arbitrary real matrix C is (B +H)/2, where H
is the symmetric polar factor of B = (C + C ′)/2.
The results are shown in Figure 3. We also intro-

duce a new benchmark that sets dollar weighting
of the asset to be the cross-sectionally normalized
cumulative return thus far for that asset, in order
to produce a benchmark that is closer to the MRB
back tests. We denote this second benchmark as
CRB.SMART and it is shown in comparison to the
first benchmark CRB and the min risk budget back-
tests (MRB, MRBA and MRBL). Note that this
back-test has an inherent look head bias in that it
uses assets that survive the period between Septem-
ber 2000 and July 2022. Hence the asset universe
comprises of higher quality assets than the NAS-
DAQ at that point in time. Since we are comparing
only the relative performance of the class of MRB*
portfolios to the risk parity portfolio, this chart
serves its purpose as a relative comparison and is
not indicative of absolute performance. Draw-down
tables are shown in Table 3.

3.4. FTSE 100 Constituents

Here we use a European equity market selection
of 72 assets (listed cash equity) from the stocks that

Figure 3: Backtest Results: Allocation into NASDAQ 100
constituents

Table 3: Top five draw-downs for each portfolio - NASDAQ
Constituents

CRB CRB.SMART MRB MRBA MRBAL

1 0.46 0.44 0.42 0.26 0.28
2 0.38 0.38 0.26 0.18 0.26
3 0.27 0.26 0.21 0.14 0.18
4 0.26 0.25 0.19 0.14 0.17
5 0.23 0.18 0.13 0.14 0.17

are listed on the London Stock Exchange(LSE) and
are part of the FTSE 100 as of July 22 2022. The
criteria for selection were the same as in the previ-
ous example in 3.3. Tickers that were part of the
FTSE index as of July 22, 2022 and had availabil-
ity of daily price time-series data for 5,448 trading
days were chosen as the asset universe. The tickers
were retrieved from the LSE web page [2] on the
same date, 102 tickers were filtered using the cri-
teria mentioned above to yield 72 tickers. Trading
simulation parameters are same in 3.3, in addition
a 10 basis point transaction cost parameter was in-
corporated. The results are shown in Figure 4. The
results confirm that setting minimum values of risk
budget can be an important tool in an investment
professional’s arsenal. Draw-down data is tabulated
in Table 4.

Table 4: Top five draw-downs for each portfolio - FTSE
Constituents

CRB CRB.SMART MRB MRBA MRBAL

1 0.47 0.45 0.26 0.17 0.19
2 0.33 0.35 0.25 0.17 0.19
3 0.30 0.23 0.20 0.16 0.18
4 0.20 0.19 0.18 0.15 0.17
5 0.17 0.18 0.14 0.14 0.16
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Figure 4: Backtest Results: Allocation into FTSE 100 con-
stituents

4. Conclusion

Portfolio optimization is an area where tech-
niques from operations research can be used to cre-
ate more stable portfolios, keeping other factors the
same. We have shown a powerful technique for
portfolio optimization where risk and return can
be traded off systematically to create resilient port-
folios. The technique we have demonstrated can
be used to obtain exact risk budgeting portfolios in
single or multi-period settings, and can also be used
when return forecasts are estimated alongside risk
budget limits. The approach lends itself naturally
to index weight calculation strategies that aim to
manage tracking error to the index benchmarks for
active asset managers. Due to the reliance of the
allocation strategy on variance information only,
these methods are applicable whenever price data
is available, thereby making them applicable to tra-
ditional and digital markets equally. The technique
described in this work can be useful for sophisti-
cated retail investors, traditional investment man-
agement companies and also to the more new-age
robo-advisors.
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