Factor Based Dirichlet Portfolios

Purushottam Parthasarathy, IEOR, IITB

Feb 27, 2023

Outline

- Motivation for the problem
- Problem Setting

Outline

- Motivation for the problem
- Problem Setting
- Prior work

Outline

- Motivation for the problem
- Problem Setting
- Prior work
- Our Work
- Results
- Summary

• Two major schools of thought in portfolio engineering -

- Two major schools of thought in portfolio engineering -
- First is the Markowitz style of one period optimization with covariance and return information

- Two major schools of thought in portfolio engineering -
- First is the Markowitz style of one period optimization with covariance and return information
- Second is the online portfolio growth theory stream initiated by Kelly and Cover

- Two major schools of thought in portfolio engineering -
- First is the Markowitz style of one period optimization with covariance and return information
- Second is the online portfolio growth theory stream initiated by Kelly and Cover
- Online portfolio growth theory to obtain long term bounds on investment algorithms in a multi-period setting an explicit optimization step may or may not be involved

- Two major schools of thought in portfolio engineering -
- First is the Markowitz style of one period optimization with covariance and return information
- Second is the online portfolio growth theory stream initiated by Kelly and Cover
- Online portfolio growth theory to obtain long term bounds on investment algorithms in a multi-period setting - an explicit optimization step may or may not be involved
- Our goal is to use techniques from operations research and industrial engineering to attempt to improve the state of the art in the latter

• Kelly(1956) gave the first expression for the optimal proportion of capital to be invested if the investor wants to maximize long term growth rate of her portfolio

- Kelly(1956) gave the first expression for the optimal proportion of capital to be invested if the investor wants to maximize long term growth rate of her portfolio
 - Kelly is asking how much capital to risk in each round of investment when investor has a private wire to the results of a horse race

- Kelly(1956) gave the first expression for the optimal proportion of capital to be invested if the investor wants to maximize long term growth rate of her portfolio
 - Kelly is asking how much capital to risk in each round of investment when investor has a private wire to the results of a horse race
 - Problem setup is an double or nothing game

- Kelly(1956) gave the first expression for the optimal proportion of capital to be invested if the investor wants to maximize long term growth rate of her portfolio
 - Kelly is asking how much capital to risk in each round of investment when investor has a private wire to the results of a horse race
 - Problem setup is an double or nothing game
 - The result is simple, invest l = 2q 1 where l is proportion of capital and q is probability that private signal is correct

- Kelly(1956) gave the first expression for the optimal proportion of capital to be invested if the investor wants to maximize long term growth rate of her portfolio
 - Kelly is asking how much capital to risk in each round of investment when investor has a private wire to the results of a horse race
 - Problem setup is an double or nothing game
 - The result is simple, invest l = 2q 1 where l is proportion of capital and q is probability that private signal is correct
 - Example, if q is 0.5, you have no edge and you don't invest!

- Kelly(1956) gave the first expression for the optimal proportion of capital to be invested if the investor wants to maximize long term growth rate of her portfolio
 - Kelly is asking how much capital to risk in each round of investment when investor has a private wire to the results of a horse race
 - Problem setup is an double or nothing game
 - The result is simple, invest l = 2q 1 where l is proportion of capital and q is probability that private signal is correct
 - Example, if q is 0.5, you have no edge and you don't invest!
 - Note that this is the first attempt to obtain results to maximize long term growth rate which is $\frac{1}{N}\log \frac{V_N}{V_0}$, where V_N is value of the portfolio after N rounds

Online Portfolio Growth Theory - Constant Rebalanced Portfolios

• Cover(1984) proposed an algorithm to calculate the best re-balanced portfolio without the benefit of hindsight

Online Portfolio Growth Theory - Constant Rebalanced Portfolios

- Cover(1984) proposed an algorithm to calculate the best re-balanced portfolio without the benefit of hindsight
 - Given a vector of multiplicative returns X where X_i is the proportional price improvement (or decrement) of asset i and b is the portfolio vector defined on the unit simplex such that b ≥ 0, the expected log-return of the investor after one period would be: E(log b^tX)

Online Portfolio Growth Theory - Constant Rebalanced Portfolios

- Cover(1984) proposed an algorithm to calculate the best re-balanced portfolio without the benefit of hindsight
 - Given a vector of multiplicative returns **X** where X_i is the proportional price improvement (or decrement) of asset i and **b** is the portfolio vector defined on the unit simplex such that $b \ge 0$, the expected log-return of the investor after one period would be: $E(\log b^t X)$
 - The goal is to find the best *b*^{*} along multiple investment periods, and the algorithm proposed by Cover is

Online Portfolio Growth Theory - Constant Rebalanced Portfolios

- Cover(1984) proposed an algorithm to calculate the best re-balanced portfolio without the benefit of hindsight
 - Given a vector of multiplicative returns **X** where X_i is the proportional price improvement (or decrement) of asset i and **b** is the portfolio vector defined on the unit simplex such that $b \ge 0$, the expected log-return of the investor after one period would be: $E(\log b^t X)$
 - The goal is to find the best *b*^{*} along multiple investment periods, and the algorithm proposed by Cover is

$$b'_{i} = b_{i} \frac{X_{i}}{b^{t} X}, b^{0} > 0$$
 (1)

Online Portfolio Growth Theory - Constant Rebalanced Portfolios

- Cover(1984) proposed an algorithm to calculate the best re-balanced portfolio without the benefit of hindsight
 - Given a vector of multiplicative returns **X** where X_i is the proportional price improvement (or decrement) of asset i and **b** is the portfolio vector defined on the unit simplex such that $b \ge 0$, the expected log-return of the investor after one period would be: $E(\log b^t X)$
 - The goal is to find the best *b*^{*} along multiple investment periods, and the algorithm proposed by Cover is

$$b'_{i} = b_{i} \frac{X_{i}}{b^{t} X}, b^{0} > 0$$
 (1)

• Where b^0 is chosen strictly inside the boundary of the simplex. We can see the update step is a multiplicative update to move the portfolio vector along the gradient of the log return function shown above.

Online Portfolio Growth Theory - Constant Rebalanced Portfolios

- Cover(1984) proposed an algorithm to calculate the best re-balanced portfolio without the benefit of hindsight
 - Given a vector of multiplicative returns **X** where X_i is the proportional price improvement (or decrement) of asset i and **b** is the portfolio vector defined on the unit simplex such that $b \ge 0$, the expected log-return of the investor after one period would be: $E(\log b^t X)$
 - The goal is to find the best b^* along multiple investment periods, and the algorithm proposed by Cover is

$$b'_{i} = b_{i} \frac{X_{i}}{b^{t} X}, b^{0} > 0$$
 (1)

- Where b^0 is chosen strictly inside the boundary of the simplex. We can see the update step is a multiplicative update to move the portfolio vector along the gradient of the log return function shown above.
- Cover shows that in the limit $b^{'} \to b^{*}$ which must exist as it is the result of the maximization of a concave function over the simplex

Purushottam Parthasarathy, IEOR, IITB Factor Bas

Factor Based Dirichlet Portfolios

• Cover(1996) proposed an improved algorithm or portfolio strategy to calculate the 'universal' portfolio that asymptotically approaches the best re-balanced portfolio, without the benefit of hindsight

- Cover(1996) proposed an improved algorithm or portfolio strategy to calculate the 'universal' portfolio that asymptotically approaches the best re-balanced portfolio, without the benefit of hindsight
- As defined before $x = (x_1, x_2, ..., x_m)^t \ge 0$ denotes stock market vector for one investment period, where x_i is the price relative for one stock

- Cover(1996) proposed an improved algorithm or portfolio strategy to calculate the 'universal' portfolio that asymptotically approaches the best re-balanced portfolio, without the benefit of hindsight
- As defined before $x = (x_1, x_2, ..., x_m)^t \ge 0$ denotes stock market vector for one investment period, where x_i is the price relative for one stock
- A portfolio $b = (b_1, b_2, b_3, ..., b_m)^t \ge 0$ s.t $\Sigma b_i = 1$ is the proportion current wealth invested in each of the m stocks

- Cover(1996) proposed an improved algorithm or portfolio strategy to calculate the 'universal' portfolio that asymptotically approaches the best re-balanced portfolio, without the benefit of hindsight
- As defined before $x = (x_1, x_2, ..., x_m)^t \ge 0$ denotes stock market vector for one investment period, where x_i is the price relative for one stock
- A portfolio $b = (b_1, b_2, b_3, ..., b_m)^t \ge 0$ s.t $\Sigma b_i = 1$ is the proportion current wealth invested in each of the m stocks
- Define total wealth that is re-invested repeatedly as $S_n(b) = \prod_{i=1}^n b^t x_i$

- Cover(1996) proposed an improved algorithm or portfolio strategy to calculate the 'universal' portfolio that asymptotically approaches the best re-balanced portfolio, without the benefit of hindsight
- As defined before $x = (x_1, x_2, ..., x_m)^t \ge 0$ denotes stock market vector for one investment period, where x_i is the price relative for one stock
- A portfolio $b = (b_1, b_2, b_3, ..., b_m)^t \ge 0$ s.t $\Sigma b_i = 1$ is the proportion current wealth invested in each of the m stocks
- Define total wealth that is re-invested repeatedly as $S_n(b) = \prod_{i=1}^n b^t x_i$
- The best possible re-balanced portfolio is that Cover sets up as a benchmark is S^{*}_n = max_b S_n(b)

• Cover's idea is setting up an infinite number of portfolio managers in the unit simplex, distributed **uniformly**, each given allocation b

- Cover's idea is setting up an infinite number of portfolio managers in the unit simplex, distributed **uniformly**, each given allocation b
- The performance or total wealth of any manager at the end of k periods is is $S_k = \prod_{i=1}^k b^t x_i$

- Cover's idea is setting up an infinite number of portfolio managers in the unit simplex, distributed **uniformly**, each given allocation b
- The performance or total wealth of any manager at the end of k periods is is $S_k = \prod_{i=1}^k b^t x_i$
- Consider a weighted allocation that rewards the managers who do well and proportionally penalizes the ones that do poorly, and integrate over the simplex, a weighted portfolio: $\frac{\int bS(b)db}{\int S(b)db}$

- Cover's idea is setting up an infinite number of portfolio managers in the unit simplex, distributed **uniformly**, each given allocation b
- The performance or total wealth of any manager at the end of k periods is is $S_k = \prod_{i=1}^k b^t x_i$
- Consider a weighted allocation that rewards the managers who do well and proportionally penalizes the ones that do poorly, and integrate over the simplex, a weighted portfolio: $\frac{\int bS(b)db}{\int S(b)db}$
- Key result, the portfolio that approximates the best constant re-balance portfolio with hindsight is the same weighted portfolio:

Online Portfolio Growth Theory - Universal Portfolios II

- Cover's idea is setting up an infinite number of portfolio managers in the unit simplex, distributed **uniformly**, each given allocation b
- The performance or total wealth of any manager at the end of k periods is is $S_k = \prod_{i=1}^k b^t x_i$
- Consider a weighted allocation that rewards the managers who do well and proportionally penalizes the ones that do poorly, and integrate over the simplex, a weighted portfolio: $\frac{\int bS(b)db}{\int S(b)db}$
- Key result, the portfolio that approximates the best constant re-balance portfolio with hindsight is the same weighted portfolio:

$$b_{k+1} = \frac{\int_{\Delta} bS_k(b)db}{\int_{\Delta} S_k(b)db}$$
(2)

where

$$S_k(b) = \prod_{i=1}^k b^t x_i \tag{3}$$

• Cover and Ordentlich(1996) give another proposal for dealing with 'side information'

- Cover and Ordentlich(1996) give another proposal for dealing with 'side information'
- Side information is a discrete variable that is revealed before the portfolio is constructed every period, like a signal or a news item

- Cover and Ordentlich(1996) give another proposal for dealing with 'side information'
- Side information is a discrete variable that is revealed before the portfolio is constructed every period, like a signal or a news item
- This extends to the concept of a state-constant rebalanced portfolio, in the dimension k(m-1) where k is number of possible states for the side information and m is the number of assets

- Cover and Ordentlich(1996) give another proposal for dealing with 'side information'
- Side information is a discrete variable that is revealed before the portfolio is constructed every period, like a signal or a news item
- This extends to the concept of a state-constant rebalanced portfolio, in the dimension k(m-1) where k is number of possible states for the side information and m is the number of assets
- They show that we can construct parallel histories, one for each discrete variable and deploy the universal portfolio from that history

- Cover and Ordentlich(1996) give another proposal for dealing with 'side information'
- Side information is a discrete variable that is revealed before the portfolio is constructed every period, like a signal or a news item
- This extends to the concept of a state-constant rebalanced portfolio, in the dimension k(m-1) where k is number of possible states for the side information and m is the number of assets
- They show that we can construct parallel histories, one for each discrete variable and deploy the universal portfolio from that history
- For a uniform and Dirichlet(1/2, 1/2, 1/2...1/2) distribution on the simplex of portfolios, the authors show that the above portfolio is 'universal' i.e. the growth achieved by this portfolio is asymptotically the same as the best state-constant rebalanced portfolio.
In Helmbold, Schapire, Singer, Warmuth(1996) authors use a utility function that serves to trade off a performance measure and a distance measure. F(W^{t+1}) = ηlog(W^{t+1}x^t) - d(W^{t+1}, W_t)

- In Helmbold, Schapire, Singer, Warmuth(1996) authors use a utility function that serves to trade off a performance measure and a distance measure. F(W^{t+1}) = ηlog(W^{t+1}x^t) d(W^{t+1}, W_t)
- The performance is based on x_t, the current relative price vector and the distance measure d is chosen to be the relative entropy between the new weight vector and the current one.

- In Helmbold, Schapire, Singer, Warmuth(1996) authors use a utility function that serves to trade off a performance measure and a distance measure. F(W^{t+1}) = ηlog(W^{t+1}x^t) d(W^{t+1}, W_t)
- The performance is based on x_t, the current relative price vector and the distance measure d is chosen to be the relative entropy between the new weight vector and the current one.
- An approximation of the optimization objective function along with a full invested constraint leads to a recursive update algorithm that uses a exponential update to the weight vector.

- In Helmbold, Schapire, Singer, Warmuth(1996) authors use a utility function that serves to trade off a performance measure and a distance measure. F(W^{t+1}) = ηlog(W^{t+1}x^t) d(W^{t+1}, W_t)
- The performance is based on x_t, the current relative price vector and the distance measure d is chosen to be the relative entropy between the new weight vector and the current one.
- An approximation of the optimization objective function along with a full invested constraint leads to a recursive update algorithm that uses a exponential update to the weight vector.
- In various empirical tests, the algorithm achieves better out of sample performance than Cover's portfolio and some other benchmarks

• Hence Helmbold et. al.(1996) show that exponential multiplicative updates yield almost the same performance as the universal portfolio and yet have less memory requirements.

- Hence Helmbold et. al.(1996) show that exponential multiplicative updates yield almost the same performance as the universal portfolio and yet have less memory requirements.
- Some approaches use a contrarian approach

- Hence Helmbold et. al.(1996) show that exponential multiplicative updates yield almost the same performance as the universal portfolio and yet have less memory requirements.
- Some approaches use a contrarian approach
- In one such work the authors in Borodin, El-Yaniv, Gogan(2003) show that a forecast step that uses mean-reversion can be used to get better portfolios. The authors calculate a transfer(asset i to asset j) which depends upon the following factors:

- Hence Helmbold et. al.(1996) show that exponential multiplicative updates yield almost the same performance as the universal portfolio and yet have less memory requirements.
- Some approaches use a contrarian approach
- In one such work the authors in Borodin, El-Yaniv, Gogan(2003) show that a forecast step that uses mean-reversion can be used to get better portfolios. The authors calculate a transfer(asset i to asset j) which depends upon the following factors:
 - Non zero only if asset i has performed better than asset j in window W
 - The strength of the transfer between i and j is proportion to the positive correlation between asset i and j in a lead lag setup (effectively asset i leads asset j in window W)
 - Strength is also proportional to the negative auto-correlation of asset i to itself

- Hence Helmbold et. al.(1996) show that exponential multiplicative updates yield almost the same performance as the universal portfolio and yet have less memory requirements.
- Some approaches use a contrarian approach
- In one such work the authors in Borodin, El-Yaniv, Gogan(2003) show that a forecast step that uses mean-reversion can be used to get better portfolios. The authors calculate a transfer(asset i to asset j) which depends upon the following factors:
 - Non zero only if asset i has performed better than asset j in window W
 - The strength of the transfer between i and j is proportion to the positive correlation between asset i and j in a lead lag setup (effectively asset i leads asset j in window W)
 - Strength is also proportional to the negative auto-correlation of asset i to itself
- The above work is an example where a heuristic is demonstrated to better than prior technique, including Cover's universal portfolio

Purushottam Parthasarathy, IEOR, IITB

• There is also a set of work that has been done that explores meta-algorithms(MAs)

- There is also a set of work that has been done that explores meta-algorithms(MAs)
- Das and Banerjee use daily SP500 data for the past 21 years to show that MAs outperform existing portfolio selection algorithms by several orders of magnitude.

- There is also a set of work that has been done that explores meta-algorithms(MAs)
- Das and Banerjee use daily SP500 data for the past 21 years to show that MAs outperform existing portfolio selection algorithms by several orders of magnitude.
- Li et al. have written a comprehensive review paper that describes 4 major techniques in this area:

- There is also a set of work that has been done that explores meta-algorithms(MAs)
- Das and Banerjee use daily SP500 data for the past 21 years to show that MAs outperform existing portfolio selection algorithms by several orders of magnitude.
- Li et al. have written a comprehensive review paper that describes 4 major techniques in this area:
 - Follow the winner type approaches (universal portfolios(1994), exponential gradient(Helmbold et al. 1996))
 - Follow the loser approaches (antiCor(Borodin et al. 2003), robust median reversion(Hyung et al. 2013), regularized mean reversion(Li et al. 2015))
 - Pattern Matching (Find returns that match current returns and forecast - Gyorfi et al. 2007)
 - Meta Algorithms (Das and Bannerjee(2011) which combine other algorithms and perform an online gradient or online newton method update)

• Cover's work involves Dirichlet uniform sampling which depends on α , the concentration parameter

- Cover's work involves Dirichlet uniform sampling which depends on α , the concentration parameter
- Consider a uniform α of (1/2, 1/2, 1/2), sample three variables from it 200 times:

- Cover's work involves Dirichlet uniform sampling which depends on α , the concentration parameter
- Consider a uniform α of (1/2, 1/2, 1/2), sample three variables from it 200 times:

Figure 1: Dirichlet(1/2, 1/2, 1/2)

- Cover's work involves Dirichlet uniform sampling which depends on α , the concentration parameter
- Consider a uniform α of (1/2, 1/2, 1/2), sample three variables from it 200 times:

Figure 1: Dirichlet(1/2, 1/2, 1/2)

• We can see a uniform weight given to the three variables

• Now consider Dirichlet(10, 100, 200)

Now consider Dirichlet(10, 100, 200)

Example of Alpha in Dirichlet (10, 100, 200) Distribution - Lengths of Strings

Figure 2: Dirichlet(10, 100, 200)

• Now consider Dirichlet(10, 100, 200)

Figure 2: Dirichlet(10, 100, 200)

• So the α parameter can be abstracted as a 'belief' of the portfolio manager

• Lot of literature on factors that drive equity returns, most famous being the Fama French three-factor model(1992) who modify the CAPM model to add two more factors to explain cross section of equity returns: $R = r + \beta(R_M - r_f) + \beta_{SMB}SMB + \beta_{HML}HML + \epsilon$

- Lot of literature on factors that drive equity returns, most famous being the Fama French three-factor model(1992) who modify the CAPM model to add two more factors to explain cross section of equity returns: $R = r + \beta(R_M r_f) + \beta_{SMB}SMB + \beta_{HML}HML + \epsilon$
- Jegadish and Titman(1993) show that momentum is also a factor in explaining the cross section of equity returns

- Lot of literature on factors that drive equity returns, most famous being the Fama French three-factor model(1992) who modify the CAPM model to add two more factors to explain cross section of equity returns: $R = r + \beta(R_M r_f) + \beta_{SMB}SMB + \beta_{HML}HML + \epsilon$
- Jegadish and Titman(1993) show that momentum is also a factor in explaining the cross section of equity returns
- Post this work 5-factor models have emerged, and funds dedicate entire teams to factor research, thereby making this line of research very applied from an industry stand-point

- Lot of literature on factors that drive equity returns, most famous being the Fama French three-factor model(1992) who modify the CAPM model to add two more factors to explain cross section of equity returns: $R = r + \beta(R_M r_f) + \beta_{SMB}SMB + \beta_{HML}HML + \epsilon$
- Jegadish and Titman(1993) show that momentum is also a factor in explaining the cross section of equity returns
- Post this work 5-factor models have emerged, and funds dedicate entire teams to factor research, thereby making this line of research very applied from an industry stand-point
- Our idea is to combine Cover's work with prior beliefs that portfolio managers might have

- Lot of literature on factors that drive equity returns, most famous being the Fama French three-factor model(1992) who modify the CAPM model to add two more factors to explain cross section of equity returns: $R = r + \beta(R_M r_f) + \beta_{SMB}SMB + \beta_{HML}HML + \epsilon$
- Jegadish and Titman(1993) show that momentum is also a factor in explaining the cross section of equity returns
- Post this work 5-factor models have emerged, and funds dedicate entire teams to factor research, thereby making this line of research very applied from an industry stand-point
- Our idea is to combine Cover's work with prior beliefs that portfolio managers might have
- Our algorithm hence biases the dirichlet alpha parameter based on any generic factor and calculates the performance weighted universal portfolio from these biased portfolio managers

- Lot of literature on factors that drive equity returns, most famous being the Fama French three-factor model(1992) who modify the CAPM model to add two more factors to explain cross section of equity returns: $R = r + \beta(R_M r_f) + \beta_{SMB}SMB + \beta_{HML}HML + \epsilon$
- Jegadish and Titman(1993) show that momentum is also a factor in explaining the cross section of equity returns
- Post this work 5-factor models have emerged, and funds dedicate entire teams to factor research, thereby making this line of research very applied from an industry stand-point
- Our idea is to combine Cover's work with prior beliefs that portfolio managers might have
- Our algorithm hence biases the dirichlet alpha parameter based on any generic factor and calculates the performance weighted universal portfolio from these biased portfolio managers

Algorithm 1 Calculating portfolio weights for size based dirichlet portfolio 1: while $t \neq T$ do

Algorithm 2 Calculating portfolio weights for size based dirichlet portfolio

- 1: while $t \neq T$ do
- 2: $\alpha_{jt} \leftarrow 1/p_{jt} \forall j \in 1..M$

Algorithm 3 Calculating portfolio weights for size based dirichlet portfolio

1: while
$$t \neq T$$
 do
2: $\alpha_{jt} \leftarrow 1/p_{jt} \forall j \in 1..M$
3: $\alpha_{it} \leftarrow \frac{\alpha_{jt}}{\min(m_{i})} \forall j \in 1..M$

4:
$$\alpha_{jt} \leftarrow \max(1, \log \alpha_{jt}) \forall j \in 1..M$$

Algorithm 4 Calculating portfolio weights for size based dirichlet portfolio

1: while $t \neq T$ do

2:
$$\alpha_{jt} \leftarrow 1/p_{jt} \forall j \in 1..M$$

3:
$$\alpha_{jt} \leftarrow \frac{\alpha_{jt}}{\min(\alpha_{jt})} \forall j \in 1..M$$

4:
$$\alpha_{jt} \leftarrow \max(1, \log \alpha_{jt}) \forall j \in 1..M$$

Require: Simulate N-Managers dirichlet portfolios from α_t

Algorithm 5 Calculating portfolio weights for size based dirichlet portfolio

1: while $t \neq T$ do

2:
$$\alpha_{jt} \leftarrow 1/p_{jt} \forall j \in 1..M$$

3:
$$\alpha_{jt} \leftarrow \frac{\alpha_{jt}}{\min(\alpha_{jt})} \forall j \in 1..M$$

4:
$$\alpha_{jt} \leftarrow \max(1, \log \alpha_{jt}) \forall j \in 1..M$$

Require: Simulate N-Managers dirichlet portfolios from α_t

Require: Calculate Universal Portfolios from factor biased managers

5:
$$W_{jt} \leftarrow \frac{\int (Sbdb)}{\int (Sdb)}$$

Algorithm 6 Calculating portfolio weights for size based dirichlet portfolio

1: while $t \neq T$ do

2:
$$\alpha_{jt} \leftarrow 1/p_{jt} \forall j \in 1..M$$

3:
$$\alpha_{jt} \leftarrow \frac{\alpha_{jt}}{\min(\alpha_{jt})} \forall j \in 1..M$$

4:
$$\alpha_{jt} \leftarrow \max(1, \log \alpha_{jt}) \forall j \in 1..M$$

Require: Simulate N-Managers dirichlet portfolios from α_t

Require: Calculate Universal Portfolios from factor biased managers 5: $w_{jt} \leftarrow \frac{\int (Sbdb)}{\int (Sdb)}$

Require: Evaluate performance of calculated weight vector

6:
$$p_{t+1} = w_t X_{t+1}$$

7:
$$t \leftarrow t+1$$

8: end while

Algorithm 7 Calculating portfolio weights for size based dirichlet portfolio

1: while $t \neq T$ do

2:
$$\alpha_{jt} \leftarrow 1/p_{jt} \forall j \in 1..M$$

3:
$$\alpha_{jt} \leftarrow \frac{\alpha_{jt}}{\min(\alpha_{jt})} \forall j \in 1..M$$

4:
$$\alpha_{jt} \leftarrow \max(1, \log \alpha_{jt}) \forall j \in 1..M$$

Require: Simulate N-Managers dirichlet portfolios from α_t

Require: Calculate Universal Portfolios from factor biased managers $W_{jt} \leftarrow \frac{\int (Sbdb)}{\int (Sdb)}$ 5:

Require: Evaluate performance of calculated weight vector

6:
$$p_{t+1} = w_t X_{t+1}$$

7:
$$t \leftarrow t+1$$

8: end while

This can be varied appropriately for any factor, technical or fundamental

Results

Cover's Portfolio vs Factor Dirichlet Portfolios - NASDAQ

Figure 3: Different Factors Using NASDAQ Constituents

Purushottam Parthasarathy, IEOR, IITB

Factor Based Dirichlet Portfolios

Results

Cover's Portfolio vs Factor Dirichlet Portfolios - FTSE

Figure 4: Different Factors Using FTSE Constituents

Purushottam Parthasarathy, IEOR, IITB

Factor Based Dirichlet Portfolios

Summary I

• Online portfolio optimization is a rich area of research where there is around 70 years of literature
Summary I

- Online portfolio optimization is a rich area of research where there is around 70 years of literature
- We are attempting to combine economic insight and the work of information theorists to offer a practical heuristic that is easy to compute and implement

Summary I

- Online portfolio optimization is a rich area of research where there is around 70 years of literature
- We are attempting to combine economic insight and the work of information theorists to offer a practical heuristic that is easy to compute and implement
- This technique is flexible in that it can be used to combine different views into compound portfolios

Summary II

• Our reward for last year!

Summary II

• Our reward for last year!

Operations Research Letters Supports open access			Submit your article 🏾
Articles & Issues 🗸 🛛 About 🥆	Publish 🗸 🛛 Order journal 🛛	Q Search in this journal	Guide for authors 🏾
Actions for selected articles Short communication • Full text access Select all / Deselect all Almost exact risk budgeting with return forecasts for portfolio allocation			
Download PDFs	Avinash Bhardwaj, Manjesh K. Hanawal, Purushottam Parthasarathy Pages 171-175		
▲ Export citations	📩 Download PDF 🛛 Article preview 🤝		

Figure 5: Bhardwaj, Avinash, Manjesh K. Hanawal, and Purushottam Parthasarathy. "Almost Exact Risk Budgeting with Return Forecasts for Portfolio Allocation." Operations Research Letters (2023).